
IGMO Christmas
Edition Solutions

Note:

This was an unofficial version released by the team. Hence there are no submission statistics.
However, we did encourage users from the discord server affiliated with IGMO (IΓMC)
to send their solutions, and wherever an appropriate solution was received, the user who
submitted it was mentioned. If the official solution was vastly different from the submitted
solution, it was also included. The affiliated discord server is linked on the website
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https://discord.com/invite/u8jdZkRV4P


Problem 1 :

Santa Claus decorates his Christmas tree with a decoration which has a shape
of a regular 12-sided polygon. Let the 12-sided polygon be A1A2A3...A12.
Suppose I1, I2 and I3 are the incentres of△A1A2A5,△A5A7A8 and△A8A11A1

respectively. Prove that I1A8, I2A1 and I3A5 are concurrent.

Solution

Problem 2 :

Santa has almost finished decorating his giant gingerbread house for Christ-
mas. The only thing left to do is to create a circular fence around it. For this
purpose Santa wants to use n ≥ 2 candy canes in 3 colors: Green, Red and
White, but he doesn’t want any two adjacent candy canes to have the same
color. Find the number of possible arrangements of this fence in terms of n
Note : Single candy canes are distinguishable.

Solution

Problem 3 :

For n ≥ 2, let a1, a2, . . . , an be reals such that a1 + a2 + · · ·+ an = nn − 1.

Show that

a21 +
a22

1 + a21
+ · · ·+ a2n

1 + a21 + a22 + · · ·+ a2n−1

> n

(
n2

n
√
n+ 1

− 1

)

Solution
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Problem 4 :

Let f and g be real-valued functions defined for all real numbers x and a,
and s,m be some positive constants, such that f, g satisfy the equations

f(x+ a) + f(x− a) =
2f(x)g(a)

s
, |f(x)| ≤ m

for all x, a. Prove that if |f | is not identically zero, and attains a maximum
value, then |g(a)| ≤ s for all a.

Solution

Problem 5 :

There are some (at least 3) elves in Santa’s backyard. The backyard has
a circular shape with diameter d. Santa finds that any three elves can be
surrounded by an ℓ× d rectangle. Prove that all the elves can be surrounded
by a 2ℓ× d rectangle.
Note: An elf being “surrounded” by a rectangle means that the point corresponding to the elf is contained

within the rectangle, or is on its perimeter. The elves have no areas, they are points.

Solution

Problem 6 :

For Christmas, Santa gifts us a special machine. This special machine takes
as input any relatively prime positive integers a, n and returns the order of
a modulo n as the output, that is to say : returns the least positive integer
b such that ab ≡ 1 mod n. Using this special machine, devise an algorithm
of time complexity at most O(log(n)) to factorize natural numbers n of the
form pq, where p, q are safe primes(which means p,q,p−1

2 ,q−1
2 are all primes

greater than 5).
Note : You should assume that calling the special machine is O(1), and for
two positve integers a and b, calculating gcd(a, b) is O(log(max(a, b)).

Solution
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Solution to P1 :

Submitted by @getthezucc#1175 on discord:
By Trigonometric Ceva’s Theorem, A8I1, A1I2, A5I3 are concurrent if

sin(∠A5A1I2)

sin(∠A8A1I2)

sin(∠A1A8I1)

sin(∠A5A8I1)

sin(∠A8A5I3)

sin(∠A1A5I3)
= 1

Note that

sin(∠A8A1I2)

sin(∠A5A1I2)
=

d(I2, A1A8)

d(I2, A1A5)
=

I2A8 cos(∠I2A8A7)

I2A5 cos(∠I2A5A7)

=
sin(∠I2A5A8)

sin(∠I2A8A5)

cos(∠I2A8A7)

cos(∠I2A5A7)

Where sine rule is applied on the second line. Similarly,

sin(∠A5A8I1)

sin(∠A1A8I1)
=

sin(∠I1A1A5)

sin(∠I2A5A1)

cos(∠I2A5A2)

cos(∠I2A1A2)

sin(∠A1A5I3)

sin(∠A8A5I3)
=

sin(∠I3A8A1)

sin(∠I3A1A8)

cos(∠I3A1A11)

cos(∠I3A8A11)

Multiplying everything,

sin(∠I2A5A8)

sin(∠I2A8A5)

cos(∠I2A8A7)

cos(∠I2A5A7)

sin(∠I1A1A5)

sin(∠I2A5A1)

cos(∠I2A5A2)

cos(∠I2A1A2)

sin(∠I3A8A1)

sin(∠I3A1A8)

cos(∠I3A1A11)

cos(∠I3A8A11)

=
sin( π

24)

sin( π
12)

cos( π
12)

cos( π
24)

sin(π8 )

sin( π
24)

cos( π
24)

cos(π8 )

sin( π
12)

sin(π8 )

cos(π8 )

cos( π
12)

= 1

Official Solution :

∠A1A5A2 = ∠A7A5A8 =
360o

12
× 1

2
= 150

∠I1A5A1 = ∠I2A5A8 =
15o

2
= 7.50
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∠A5A8A7 = ∠A1A8A11 =
360o

12
× 2× 1

2
= 300

∠I2A8A5 = ∠I3A8A1 =
30o

2
= 150

∠A2A1A5 = ∠A8A1A11 =
360o

12
× 3× 1

2
= 450

∠I1A1A5 = ∠I3A1A8 =
45o

2
= 22.50

Consider △I1A1A5, △I2A5A8 and △I3A8A1, since ∠I1A5A1 = ∠I2A5A8,
∠I2A8A5 = ∠I3A8A1, ∠I1A1A5 = ∠I3A1A8, by Jacobi’s theorem, I1A8, I2A1

and I3A5 are concurrent.

Solution to P2 :

Submitted by @getthezucc#1175 on discord:

Let the colors be represented by 1, ω, ω2 where ω is the 3rd root of unity. The
condition that every adjacent colour needs to be distinct can be represented
by

(ω + ω2)n−1 = a+ b · ω + c · ω2

where
a+ b+ c = 2n−1

By symmetry b = c (substituting ω with ω2 also works). Furthermore, since
ω + ω2 = −1, the equations can be simplified to

a− b = (−1)n−1 ⇒ b =
2n−1 − (−1)n−1

3

An arrangement corresponds to either b or c, since the last colour needs to
be different from the first, where the first colour can be chosen arbitrarily,
the answer is hence

6b = 2(2n−1 − (−1)n−1)

Thus, the number of possible arrangements in terms of n is

2n + 2(−1)n
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Alternate Solution submitted by @MountainC#8098 on discord:

We can label each fence post around the circle from 1 to n, giving a bijection
with sequences of n posts where adjacent colours are different (condition 1),
with the extra condition that post 1 and post n also need to be different (2)
since the posts lie in a circle.
Ignore (2) for the moment and consider only (1). After choosing a colour for
the first post (3 choices), each post after has 2 choices, giving g(n) = 3 · 2n−1

sequences satisfying (1).
We now find the proportion of sequences satisfying (2) via recursion. Let r(n)
denote this number, so that our final answer is f(n) = g(n)r(n). Then there
are two possibilities for the second last colour (n ≥ 2): if it is the same as
the first (with ratio 1− r(n− 1)), then (2) is guaranteed, and if it is different
then (2) only holds for 1

2 of these sequences by symmetry (each sequence as
such has a partner with the other two colours swapped). We thus obtain the
recursive formula

r(n) = (1− r(n− 1)) · 1 + r(n− 1) · 1
2
, (n ≥ 2)

which can be solved with r(2) = 1 to give

r(n) = 1− 1

2
+

1

4
− · · ·+ (−1)n−2 1

2n−2

=
1− (−1)n−1 1

2n−1

1−
(
−1

2

)
=

1

3

(
2 +

(−1)n

2n−2

)
,

which gives the final answer

f(n) = g(n)r(n)

= 3 · 2n−1 · 1
3

(
2 +

(−1)n

2n−2

)
= 2n + 2(−1)n .
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Appendix
To clarify, the note means shifting an arrangement cyclically around the fence
counts as a new arrangement (if individual positions of the fence have different
colours). Removing this condition, the problem can still be solved easily for
prime n (divide by n) but another approach will be needed for composite
numbers.

Solution to P3 :

Solution submitted by @Bernat#9585 on discord : Say a0 = 1. Adding n to
both sides of the inequality, the problem becomes equivalent to

n−1∑
i=0

∑i+1
j=0 a

2
j∑i

j=0 a
2
j

> n

(
n2n

n+ 1

) 1
n

The almost telescoping fractions motivate direct AM-GM:

n−1∑
i=0

∑i+1
j=0 a

2
j∑i

j=0 a
2
j

≥ n(
n∑

i=0

ai
2)

1
n

Then, a straightforward QM-AM gives:

n∑
i=0

ai
2 >

(
∑n

i=0 ai)
2

n+ 1
=

n2n

n+ 1

Joining both inequalities yields our desired result. Note that the inequality
is strict since all ai cannot be equal.

Solution to P4 :

Submitted by @MountainC#8098 on discord:

Suppose |f | has a maximum at x = β. Noting that |f(β)| > 0 since |f |
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is not identically zero,

2f(β)g(a)

s
= f(β + a) + f(β − a),∣∣∣∣2f(β)g(a)s

∣∣∣∣ = |f(β + a) + f(β − a)| , (abs. value)

2|f(β)||g(a)|
s

≤ |f(β + a)|+ |f(β − a)|, (triangle inequality)

2|f(β)| |g(a)|
s

≤ 2|f(β)|, (|f | max. at β)

|g(a)|
s

≤ 1, (|f(β)| > 0)

which is as desired.

Solution to P5 :

Solution submitted by @Bernat#9585 on discord

When l ≥ d, the rectangle covers the whole circle so the result is trivially true.
When l < d, since the maximal distance from two points is d, the rectangle in
the problem is equivalent to an infinitely long strip made of two paralel lines
in which the distance from each other is l. Consider the two furthest points,
and then the furthest point from the line passing through those two points.
We claim that the optimal length of the strip is precisely the distance between
the 3rd point and the line. Suppose that in an optimal strip the two parallel
lines intersect at only 2 points, one each. Then by rotating the parallel lines
with centres each point in the correct direction until the 3rd point touches
one of the lines, the distance between the two lines will decrease. Therefore,
in the optimal strip, all 3 points lie on the parallel lines. Using that A = 1

2hb,
the height is minimized by maximizing its base. Thus, the optimal will be to
pick the two furthest points to be in the first line and the 3rd point in the
second one. This gives, then, a strip of length l, as desired. Drawing the final
strip of length 2l as the union of this strip and the symmetric with respect to
the line passing through the two furthest points, we conclude the problem,
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since clearly all other points will be inside this area.

Solution to P6 :

Solution submitted by @Bernat#9585 on discord :

We will find an algorithm that works in O(1). Let 2r+1 = p and 2s+1 = q
where r and s are primes. Choose a random number a such that a4 ̸≡ 1
(mod pq). We know there are at most 42 values of a satisfying this so
it takes at most 17 tries to ensure a number satisfying the above condi-
tion. If a | n, we are done since a = p or a = q. Thus suppose this
is not the case and gcd(a, n) = 1. Now, we use the well-known fact that
ordn(a) | φ(n) = (p− 1)(q − 1) = 4rs to get that ordn(a

4) ∈ {r, s, rs}.
For the first and second case, multiplying by 2 and adding one gives our
desired p or q. For the second case, we write 4rs = (p − 1)(q − 1) = n −
(p+ q) + 1. Solving for p+ q, we now know the sum and the product of the
numbers p and q. Solving the quadratic x2 − (p+ q)x+ pq = 0 will conclude
the proof.
Remark : In order to distinguish between the first case and the second case,
just check if 2 ordn(a

4)+1 | n. If it does not divide, then we are in the case rs.
Otherwise, we have found either p, q or pq, but the third case is impossible
since 2rs+ 1 < (2r + 1)(2s+ 1).
If l ≥ d, then the 2l × d rectangle can surround the entire backyard and we
are done.
Now we consider the case of l < d. Suppose A and B represents two elves
such that the distance between them are largest among any two elves. Also,
let C be the elve such that among all the other elves, C has the maximal
distance from AB. If A, B and C are collinear, we are done. If not, we
can put the 2l × d rectangle in a way such that AB is parallel to the side
of the rectangle with a length of d and AB passes the middle line of the
rectangle, we claim that the rectangle can surround all the elves. △ABC
can be surrounded by a l × d rectangle. Since △ABC can be surrounded
by a l × d rectangle, one of its altitudes has length at most l. Since AB is
the longest side of the triangle, the corresponding altitude has to it must be
shortest among the three altitudes, it’s length is at most l. So the distance
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between C and AB is at most l. But among all the other elves, C has the
maximal distance from AB, so the distances between AB and any elves are
at most l. All the elves can be surrounded by a 2l × d rectangle.
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